Is our brain emotional?
Human Emotion

Affective Neuroscience

Is our brain emotional?
Roadmap

Tools to Study the Emotional Brain

Pleasure and Intensity

Emotion Regulation

Take-Away Qs & Expert Interview
Brrraaainnns!
Can the Brain Tell us About Emotion?

1. Identify potential biomarkers of emotion (e.g., what brain regions are associated with emotion experience).

2. Examine inter-relationships between neural regions to understand how the brain regulates emotion.

3. Inform psychological theories of emotion - causes, mechanisms, consequences.
Tools to Study the (Emotional) Brain

Example 1: Lesions

Naturally occurring lesions
(e.g., orbitofrontal cortex - Phineas Gage)

Areas of damage
(e.g., left temporal lobe aneurysm)

Areas of disease
(e.g., Frontotemporal Dementia)
Tools to Study the (Emotional) Brain

Example 2: TMS

TRANS-CRANIAL MAGNETIC STIMULATION (TMS)
- Create strong focal magnetic field over scalp of healthy participant.
- Creates temporary disruption in neural activity

- **PROS:** Reversible, repeatable, non-invasive (relatively)
- **CONS:** Not clear where disruption is located precisely, how it is working/what it is doing.
Tools to Study the (Emotional) Brain
Example 3: Neuroimaging
Tools to Study the (Emotional) Brain

Example 3: Neuroimaging

1. Computerized Axial Tomography (CAT/CT)
 - Similar to an x-ray, Rarely used now.

2. Positron Emission Topography (PET)
 - Inject radioactive isotope, measure where it travels

3. Electro-encephalography (EEG)
 - Measure local electrical activity with scalp electrodes

4. Functional Magnetic Resonance Imaging (fMRI)
 - Measures amount of oxygenated blood in a brain area (metabolic activity = brain “activity”)
Initial Insights
Emotion and Asymmetry (EEG)

Left Brain
= Positive/Approach

Right Brain
= Negative/Avoidance

(With Some Exceptions
Anger = Left Brain Bias)

Richard Davidson
U Wisconsin - Madison
Mindfulness Meditation

- 8 week randomized controlled study in mindfulness meditation (vs. waitlist)
- Healthy adults
- Meditators show brain changes: increases in left-hemispheric activity

16th Annual Wisconsin Symposium on Emotion

Neuroplasticity of Emotion: Psychopathology & Treatment

April 21—22, 2010
Ebling Auditorium, on the campus of
University of Wisconsin—Madison

featuring:
Jennifer Beer, PhD
Richard J. Davidson, PhD
Ron Duman, PhD
John Krystal, MD
Richard Tremblay, PhD
Jon-Kar Zubieta, MD

Visit the
Symposium Website
for details:
http://healthemotions.org/symposium
Roadmap

Tools to Study the Emotional Brain

Pleasure and Intensity

Emotion Regulation

Take-Away Qs & Expert Interview
The Nervous System

Central Nervous System
- BRAIN + SPINAL CORD

Peripheral Nervous System
- ALL OTHER NERVES

Autonomic Nervous System
- Monitors internal world; carries out automatic processes.
 - Sympathetic Nervous System
 - Facilitates energy expenditure (flight or fight)
 - Parasympathetic Nervous System
 - Facilitates energy storage (rest and digest)

Somatic Nervous System
- Monitors external world; carries out voluntary processes.
I. Limbic system

- Includes the hypothalamus, hippocampus, **amygdala**, nucleus accumbens, and several other nearby areas

- Has great importance in emotional life and memories for emotional events
Amygdala
EMOTION INTENSITY - 4 PARTS

1. Emotional Reactivity
2. Emotional Perception
3. Emotional Learning
4. Emotional Salience
I. Amygdala and Emotional Reactivity

Kluver-Bucy Syndrome

Originally in monkeys
(amygdala surgically removed)
- tameness & lack of fear
- indiscriminate eating patterns
- greatly increased & inappropriate sexual behavior
- tendency to attend & react to all visual stimuli
- Also in humans (e.g., accidents, tumors, stroke, encephalitis)

Adolphs et al., 2008
I. Amygdala and Emotional Reactivity

Adolphs et al., 2008
II. Amygdala and Emotion Perception

Damage to Amygdala = Impaired Emotion Perception

**Especially for Fear

Adolphs et al., 2008
III. Amygdala and Emotional Learning

LeBar et al., 1995; Olsson et al., 2007; Phelphs et al., 2001
III. Amygdala and Emotional Learning

Normal Control Subject

Patient with Amygdala Damage

LeBar et al., 1995; Olsson et al., 2007; Phelphs et al., 2001
IV. Amygdala and Emotion Salience

Is Amygdala Specific to Fear?

- Heavily implicated in fear response
- But also implicated in other emotional responses, some positive.
- Suggest amygdala function is involved in processing stimulus relevance for the goals and motivation of person
- Amygala guides processing of salient stimuli to orchestrate appropriate emotion

Image Courtesy of William Cunningham

(Cunningham & Brosch, 2012)
IV. Amygdala and Emotion Salience

Is Amygdala Specific to Fear?

“In anticipation of the 2008 presidential election, we used functional magnetic resonance imaging to watch the brains of a group of swing voters as they responded to the leading presidential candidates... When we showed the subjects the words ‘Democrat,’ ‘Republican’, and ‘Independent,’ they exhibited high levels of activity in the part of the brain called the amygdala, inducing anxiety.”

NEW YORK TIMES, NOV. 11 2007, This Is Your Brain on Politics
Other Important Limbic Regions

Insula
Implicated in experience and perception of disgust
Other Important Limbic Regions

Anterior Cingulate
Implicated in sad and happy memories
II. Striatal System (Striatum)

- includes putamen
- includes caudate nucleus
- includes nucleus accumbens
- divided into dorsal and ventral striatum
Striatal System

“Pleasure center”
Tale of Two Pleasures

ANTICIPATORY
(Wanting)

CONSUMMATOR
(Liking)

Doggie Smiling Idea Courtesy of Sunny Dutra
ANTICIPATORY
(Wanting)
“Wanting” - Anticipatory Pleasure

Prefrontal Cortex

Nucleus Accumbens

VTA

Berridge & Robinson, 1998; Schultz, 2002; Wise, 2002
CONSUMMATORY
(Liking)
“Liking” - Consummatory Pleasure

Berridge & Robinson, 1998; Schultz, 2002; Wise, 2002

Nucleus Accumbens Hotspot

Ventral Pallidium Hotspot

Liking Paths

Wanting Paths
Too Much Wanting? Substance Abuse

Berridge & Robinson, 1998; Schultz, 2002; Wise, 2002
Other Varieties of Pleasure?

Happiness?

Well-Being?
The Neuroscience of Happiness

Is happiness a skill? Modern neuroscientific research and the wisdom of ancient contemplative traditions converge in suggesting that happiness is the product of skills that can be enhanced through training and such training exemplifies how transforming the mind can change the brain.

Speakers: Kent Berridge, Richie Davidson, Daniel Gilbert

Festival: 2011

MORE ON THIS SESSION

Read transcript now
Download Transcript

http://www.aspenideas.org/session/new-neuroscience-happiness
III. Neocortex

- Outer layer of the brain, deeply folded, the prefrontal cortex is in the front part of the brain
- Involved in regulation of emotion
Roadmap

Tools to Study the Emotional Brain

Pleasure and Intensity

Emotion Regulation

Take-Away Qs & Expert Interview
Prefrontal Cortex
“The processes by which individuals influence which emotions they have, when they have them, and how they experience and express their emotions”

(Gross, 1998).
Process Model of Emotion Regulation

Event/Stimulus
ANTECEDENT-FOCUSED
- Situation
 - Selection/Modification

Assessment of Event
- Attentional Deployment
- Cognitive Reappraisal

Response
RESPONSE-FOCUSED
- Suppression

Situation
Attention
Appraisal
Response

Gross, 1998; Gross & Munoz, 1995
fMRI Studies of Emotion Regulation

Increase
Look, or Decrease
Neg or Neutral Photo

Strength of Affect
2 Sec.
10 sec.
4 sec.

RELAX

INCREASE NEG
Think about image in a way that makes you feel more negative

DECREASE NEG
Think about image that makes you feel less negative

LOOK NEG (NEU)
Observe image naturally

Strenght of Affect

<table>
<thead>
<tr>
<th></th>
<th>Increase Neg</th>
<th>Look Neg</th>
<th>Decrease Neg</th>
<th>Look Neu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strength</td>
<td>Weak</td>
<td>Strong</td>
<td>Weak</td>
<td>Strong</td>
</tr>
</tbody>
</table>

fMRI Studies of Emotion Regulation

Increase Neg > Look Neg

Decrease Neg > Look Neg

Lateral PFC
Anterior Cingulate

Images Courtesy of Kevin Ochsner
fMRI Studies of Emotion Regulation Connectivity

Price & Drevets, 2010
Involved in emotion regulation

Patients with OFC damage/lesions exhibit trouble regulating emotions
- greet strangers by kissing
- engage in inappropriate joking
- disclose to strangers

Teasing Study (Jennifer Beer)
- OFC patient: Asked to generate nickname for stranger & tease them with this nickname.
- Teased in overly forward/sexual manner
- Showed low embarrassment levels

Beer et al. (2006)
Lesion Studies of Emotion Regulation

Controls

OFC Patients

GALVANIC SKIN RESPONSE

TIME
Emotion Specificity?
Fig. 1: What Jason likes.
Distinct emotion categories (including happiness, sadness, fear, anger, and disgust) are biologically basic.

Emotions can be localized to specific brain regions (or defined networks)

Every basic emotion has specific physiological response

- Emotions are constructed mental states that occur when many different systems in the brain work together.

- Networks of brain regions interact to produce valence & arousal.

- Emotions emerge when neural systems associated with valence or arousal interact to produce distributed patterns of activation across brain.

- Each emotion is heterogeneous (different kinds of fear) and have different neural patterns.
Meta-Analysis of Affective Neuroscience
Phan et al. (2002)

55 fMRI/PET studies on emotion (fear, sad, disgust, anger, happiness) between 1990-2000

Tabulated # of studies reporting brain activation in specific regions for tasks eliciting these emotions

Used chi-squared analysis to examine proportion of studies reporting activation in a specific region for a given emotion

2 regions:

Amygdala (66% fear, 20% happiness, 15% sadness)

Subcallosal cingulate (46% sadness, 20% happiness, 20% anger)
1. Core Limbic
2. Lateral Paralimbic
3. Medial prefrontal cortex
4. Cognitive/motor network
5. Occipital/visual association
6. Medial posterior

Figure 2.
Voxel level: 18,489 voxels

Singular value decomposition

Dimension reduction (NMDS) & Clustering

Parcel level: 172 parcels

Region level: 21 regions

Group level: 6 networks

Kober et al. (2008)
Image Courtesy of Hedy Kober
| 91 fMRI studies on emotion perception or experience (fear, sad, disgust, anger, happiness) between 1990-2007 | Use Multilevel Peak Kernel Density Analysis to examine set of brain regions specifically active across all study contrasts. Then use density analysis to identify regions with consistent activations for specific emotions. | Used chi-squared analysis to create maps to indicate if certain active regions were more active in studies of each emotion category vs. average of all other emotions. | Found functionally consistent AND selective regions | Support for both approaches. |
Roadmap

Tools to Study the Emotional Brain

Pleasure and Intensity

Emotion Regulation

El Fin!
Experts in Emotion

June Gruber
Yale University
Experts In Emotion Interview

Dr. Richard Davidson

William James and Vilas Professor of Psychology and Psychiatry
Director, Waisman Brain Imaging Lab
Director, Lab for Affective Neuroscience
Founder and Chair, Center for Investigating Healthy Minds

Affective neuroscience
Experts In Emotion Interview

Dr. Kent Berridge

James Olds Collegiate Professor of Psychology and Neuroscience
University of Michigan

Pleasure and reward in the brain
Thank You!